Showing posts with label dimethyl ether. Show all posts
Showing posts with label dimethyl ether. Show all posts

Monday, November 11, 2019

Producing Renewable Jet Fuels from Carbon Neutral Methanol

In a renewable energy economy, carbon neutral methanol (CH3OH) can be either directly utilized or converted into  more appropriate carbon neutral fuels for ground, air, sea, and even space transportation.

Using carbon neutral nuclear, hydroelectric, solar, wind, or OTEC technologies,  this simplest of alcohols can be easily derived from a variety of renewable resources:

1. The pyrolysis of urban garbage and sewage

2. The pyrolysis of agricultural bio-waste

3. The pyrolysis of dead trees and other potentially fire hazardous materials from forest

4. Hydrogen produced through water electrolysis and synthesized with CO2 waste from the pyrolysis of garbage and sewage

5. Hydrogen produced through water electrolysis and synthesized with CO2 directly extracted from the atmosphere

6. Hydrogen produced through water electrolysis and synthesized with CO2 extracted from carbonaceous materials within seawater

7. Hydrogen produced through water electrolysis and synthesized with CO2 extracted from flu gases from methanol electric power plants, syngas electric power plants, or wood burning power plants.    

Automobiles can be relatively cheaply converted to use methanol or methanol could be used in high efficiency methanol fuel cell/battery electric automobiles.  Methanol can also be blended with gasoline up to 15% without any vehicular modifications. And methanol can also be converted into gasoline and can be either mixed with petroleum derived gasoline or can totally replace gasoline derived from fossil fuels.

Methanol can be dehydrated into dimethyl ether as a substitute for diesel fuel. Diesel fuel vehicles would only require relatively inexpensive modifications to utilize dimethy either from methanol.

Methanol is already utilized as a marine fuel substitute for some sea vessels. And methanol is a favored clean  fuel substitute for marine vessels.

Future short  range commuter aircraft using   batteries could greatly extended their ranges by using methanol fuel cells.  

Methanol could be used to safely and conveniently store hydrogen for future liquid hydrogen fueled super sonic and hypersonic  aircraft and space rockets. When aircraft fueling is required, hydrogen could be extracted from methanol storage tanks through energy efficient heat reformation and then chilled into liquid hydrogen before being pumped into an aircraft or spacecraft. 
Process for converting methanol into jet fuel

More recently, David Bradin, has proposed producing jet fuel directly from methanol. Such a process would require some of the methanol to be converted into olefins primarily ethylene and propylene, with some amount of butylene and higher olefins using a methanol-to-olefins catalyst and then oligomerizing them under conditions that provide olefins that a in the jet fuel range.  The olefins can then optionally be  hydrotreated and/or isomerized. A second portion of methanol can be converted into dimethyl ether using a zeolite catalyst. The dimethyl ether is then reacted over a catalyst to form hydrocarbons and aromatics within the jet fuel range. All or part of the two separate product streams can be combined, to provide jet fuel components which include isoparaffins and aromatics in the jet fuel range. This process can be used to produce a variety of jet fuel compositions, such as JP8, Jet A, and JP1.  JP8 is jet fuel that is widely used by the US military for both sea craft and ground vehicles. Jet A are jet fuels that are widely used by commercial airlines in the US.

Links and References

Process for producing renewable jet fuel composition

Utilizing Renewable Methanol to Power Electric Commuter Aircraft

Methanol Economy

Methanol gasoline blends

‘Methanol economy’ gains ground with technology, market developments

Wednesday, November 28, 2018

Mitigating Forest Fires by Harvesting Potentially Hazardous Woodland Biomass for the Production of Renewable Methanol

California Fires 2018 (Credit: David McNew/Getty)


 by Marcel F. Williams

California's forest, woodland areas, and its nearby residents are the latest victims of climate change as the world's fossil fuel dominated energy economy continues to increase greenhouse gasses in the Earth's atmosphere to dangerous levels.   

The state of California has 33 million acres of forest land.  Less than 400,000 of that acreage  burned in California from 1980 to 1990.  But just last year, 1.4 million acres burned in California. And so far this year, 1.8 million acres of California land has  burned.

Why?

California has grown 3 degrees warmer during the autumn seasons over the past 40 years while rainfall in the state has decreased by about one third during the same  period of time.

The  Federal government owns about 57% of the woodlands in California. Privately owned forest accounts for about 40% of California's woodland areas. But the State of California only owns about 3% of Califorinia's forest.

It is currently estimated that California's woodland areas have approximately 129 million dead trees. . Ironically, removing dead trees actually enables the spread of grasses and combustible weeds that make forest more likely to burn. Dry kindling, brush, bushes and twigs are the principal catalyst for the rapid spread of wildfires. So such vegetation also has to be safely managed.

Some of the worst forest fires in California have been caused by power lines. This has prompted some in the state to suggest burying power lines that transverse forested areas. But their are more than 176,000 miles of power lines in California. And putting power lines underground would cost ten times as much as stringing them on poles.

Controlled burning of woodland vegetation has long been a method for fire mitigation since before the arrival of Europeans in North America. But  burning  woodland vegetation would increase the amount of excess carbon dioxide put into the Earth's atmosphere, exacerbating the problem of rising temperatures that have helped to enhance the fire danger in California in the first place.

But  there is an alternative solution that could make the mitigation of forest fires  in California economically sustainable while also reducing California's dependence on fossil fuels. And such measures cold eventually lead California's energy production and use becoming completely carbon neutral.   And all it would  take would be for two legislative measures to pass within the State of California. 

Its my view that the State government in California should pass legislation that:

1. Mandates that  all utilities producing electricity within the State of   California  produce at least 5% of that electricity  for their customers by using-- bio-methanol-- directly derived  from  the dead trees and potentially dangerous woodland biomass in California’s forest and wooded residential areas by the year 2025 and up to  10% by the year 2030

and 

2. Requires all gasoline sold in California to contain at least 5%-- bio-gasoline-- synthesized from bio-methanol that is directly derived from the dead trees and potentially dangerous woodland vegetation in California's forest and wooded residential areas by the year 2025 and up to 10% by the year 2030.

That's it! 

Methanol electric power plant at Point Lisas, Trinidad (Credit: Mendenhall Technical Services)

Approximately 33% of the electricity produced in California is generated by natural gas power plants. About 53% of California's electric power is produced by carbon neutral renewable and nuclear power energy sources.

Its neither difficult nor exorbitantly expensive to modify an existing natural gas electric power plant  to use methanol instead of natural gas. Additionally,  methanol electric power plants would have a higher electric power output than burning natural gas thanks to wood alcohol's  low heating value, low lubricity, and low flash point. 


Gasoline can be blended with methanol up to 15% without any modifications to an automobile. But 
energy companies have been able to synthesize  methanol directly  into high octane gasoline since the 1970s. And this would allow any level of mixing with gasoline from petroleum. In theory, you could have gasoline that is 80% derived from bio-methanol and 10% from petroleum with the remaining 10% of the fuel being composed of ethanol. Such an automotive fuel would be-- 90% derived-- from renewable biomass, reducing the utilization of gasoline from oil by 90%.

Any increases in the cost of gasoline containing bio-gasoline from bio-methanol could encourage Californians to purchase more fuel efficient electric and plug-in-hybrid electric vehicles. But a vehicle fuel mix of 10% ethanol (Federally mandated), 10%  gasoline from bio-methanol, and 80% gasoline from petroleum could substantially reduce oil demand, possibly mitigating any additional cost related to a mandated use of 10% bio-gasoline.

Methanol could also be directly used in high fuel efficiency hybrid fuel cell vehicles. Using methanol directly in automobiles would, of course, be cheaper than converting methanol into gasoline. Bio-methanol derived from California's forest could also be used to produce biodiesel.

There is also a growing global interest in using methanol to power sea vessels. Methanol powered ships would be cleaner and bio-methanol ships  with no sulfur emissions and  lower nitrogen oxide emissions relative to current marine vessels powered by fuels synthesized from petroleum. Marine methanol ferries are already operating between Sweden and Germany.

Legislation mandating the use of bio-methanol from California's forest should provide a strong economic incentive for energy companies selling electricity and gasoline in California to hire forest workers to aggressively harvest dead trees and other potentially dangerous woodland vegetation from California forest and residential woodland areas for conversion into methanol. This should substantially reduce  the level of fire  danger in California's woodland areas while also reducing the amount of CO2 put into the atmosphere as the result of the reduction in forest fire and forest fire intensity.  

Beyond the reduction in fire danger,  hiring people to harvest potentially dangerous woodland biomass  should have a  positive economic impact for nearby residential communities.  Converting at least 10% of the  natural gas power plants in California for methanol utilization should also have some positive economic impact for communities near such energy producing facilities.   And the deployment of  pyrolysis and synthesis facilities designed to convert biomass into methanol within  California should have positive economic impact for the entire state.


Notional Flying Whale airship (Credit: Flying Whales)

The enhanced harvesting of dead trees and potentially dangerous woodland vegetation from remote forest might also encourage energy companies within  California  to utilize the next generation of airship technology. And airships might also greatly enhance the ability of the State of California and the US Federal government to fight fires in California's forest.

Airships being developed by the French company, Flying Whales, are being designed to transport up to 60 tonnes of lumbar within forested areas. Such airship technology could obviously be of use in California for removing the hundreds of dead trees that currently exist in California forest.

Lockheed Martin, on the other hand,  is developing an airship that could transporting payloads up to 20 tonnes in mass within a large cargo bay.  Forest kindling, grass,  bushes, twigs and other potentially dangerous vegetation could be removed from California forest by Lockheed Martin's airships.
 
Similar airship technology could also be used by the State and Federal government to fight forest fires,  dousing woodland fires and residential areas near forest with tonnes of water routinely retrieved from nearby lakes. The Lockheed Martin airships could also be used to rescue residents and fire fighters that might be trapped by raging forest fires.

The aggressive utilization of   airship technology in California could help California businesses to lead the US and the world in  the new age of airships. And, in theory,  such airships could be fueled with dimethyl ether, derived from methanol derived from California's forest  my modifying the diesel engines to use dimethyl ether.

Lockheed Martin airship (Credit: Lockheed Martin)

The introduction of a methanol economy into California could also enhance the ability of the state to become-- completely carbon neutral by mid century. This, however,  would require the production of hydrogen through renewable or nuclear resources--  or a combination of both. Hydrogen could be used to synthesize methanol from wasted CO2 from the pyrolysis of urban and rural biomass  and from the  CO2 waste from the flu gasses of methanol electric power plants.

For California to be completely carbon neutral, all of the natural gas electric power plants in California would have to be converted into methanol power plants. The gradual  conversion of electric power production from natural gas to renewable methanol would make California carbon negative during the transition from fossil fuels to renewable biomass,  with more CO2 being extracted from the Earth's atmosphere  than being returned to the atmosphere. However, once all fossil fuel power plants have been replaced by methanol power plants that recycle CO2 from methanol synthesis and flu gas, then electric energy production and consumption in California would be carbon neutral.

Synthesis of renewable methanol from biomass.

Hydrogen in California could be produced from large solar or nuclear facilities located near biomass pyrolysis plants and methanol electric power plants. Alternatively, such facilities located near California coastlines could liquefy the carbon dioxide, exporting the CO2 by tankers to remote ocean nuclear power or renewable (floating wind, solar, or OTEC) facilities  in remote US territorial waters where methanol and other renewable synthetic fuels could be safely manufactured.  The Exclusive Economic Zones (EEZ) surrounding remote island territories such as: Wake Island, Howland Island, Baker Island, Johnston Atoll, Jarvis Island, etc. could be regions where floating vessels could use carbon neutral energy sources to produce methanol, jet fuel, dimethyl ether, gasoline and diesel fuel far away from urban populations.  Methanol could then be shipped by methanol powered tankers back to the California coastline to fuel its methanol electric power plants or for conversion into renewable gasoline. 

But once the transition from fossil fuels is complete, California energy production and consumption would be carbon neutral. Eventually,  California will have a shortage of bio-carbon resources for its energy economy which would require the extraction of additional CO2 directly from the atmosphere or from seawater or both. 



Links and References


 
Senate Passes Legislative Packagein Response to Wildfire Danger 

Thinning California's fire-proneforests: 5 things to know aslawmakers move toward a plan 
What fire researchers learnedfrom California’s blazes


 Methanol for Power Generation
Methanol as a Low Cost Alternative Fuel for Emission Reduction in Gas Turbines
Methanol - Gaining Twice: Improving Both the Quality of Air as well as Providing a Reliable Electricity Supply

Renewable Methanol as Liquid Electricity

The Methanol Alternative: 2012 Methanol Forum

The Production and Utilization of Renewable Methanol in a Nuclear Economy

Methanol Fuel Blending

The Production of Bio-Methanol

The rise, rise, rise of bio-methanol for fuels and chemical markets

In France, whales soon will fly

Lockheed Martin LMH-1 (P-791)


Monday, January 27, 2014

The Future of Ocean Nuclear Synfuel Production

Artist’s rendition of the Russian floating nuclear power plant “Akademik Lomonosov” (Credit: SevMashZevod)
by Marcel F. Williams

Land based commercial nuclear power  is the safest form of electricity production ever created. No one died as the result of radiation exposure at the Fukushima nuclear facilities in Japan-- despite three meltdowns-- thanks to the inherent safety of the containment structures. But even if you include the mortality rate of the Chernobyl nuclear accident which didn't have a containment structure, the mortality rate for commercial nuclear energy is 90 deaths per trillion kWhr compared to:

Wind, 150 deaths per trillion kWhr

 Rooftop solar,   440 deaths per trillion kWhr,

Hydroelectric, 1400 deaths per trillion kWhr

Natural gas,  4000 deaths per trillion kWhr

Coal, a whopping 170,000 deaths per trillion kWhr.

However, these statistical facts have not alleviated the unreasonable fear that many have of commercial nuclear energy-- nor people's paradoxical phobia of radiation in general. This seems ironic since Americans exist in a society where radioactive materials are commonly used in nearby facilities such as hospitals and clinics. Americans are also  frequently exposed to much higher levels of cosmic radiation when they're flying in the upper atmosphere on airliners. Astronauts endure levels of radiation while in orbit much higher than what would be allowed for nuclear workers on Earth on a daily basis.  Americans also don't seem to have any fear about joining the US Navy to serve on nuclear powered aircraft carriers and submarines. And families don't seem to have any fears about  greeting their sons and daughters and husbands and wives when they depart from nuclear vessels on their return to shore.  

Still, there are many who have an almost innate fear of commercial nuclear power. And this unreasonable fear by some American's could seriously imperil the environment and the  quality of life for future generations.

Humans are currently living within an atmosphere that is alien to our species and even to our 2.6 million year old genus, Homo. Our use of fossil fuels has now pumped so much carbon dioxide into the air  that CO2 now comprises more than  400 parts per million of our atmosphere. These are levels of CO2 that have not existed on the Earth since the Pliocene, a warm epoch that spanned 5.3 million years ago until 2.6 million years ago when sea levels may have been as much as 40 meters higher than they are today. And as the polar  ice caps continue to melt and sea levels continue to rise, there are no signs that our civilization is currently stopping the increase of  greenhouse gasses into our atmosphere through the burning of fossil fuels. 

Yet the United States and most other industrial countries could easily stop the increase in CO2 levels into the atmosphere within the next 20 to 30 years if we simply built a lot more nuclear power plants for both  electricity and synthetic fuel production. There's already enough room at the more than 60   nuclear sites in the US to increase nuclear generation at each site to at least 8 GWe. That would be more than enough electricity to replace the electricity from fossil fuels in the US.

But what about transportation fuels for automobiles, trucks, ships, plains, and heavy ground vehicles?

Fortunately, a new generation of small nuclear reactors is about to emerge in the United States and in  the rest of the world. These small nuclear reactors offer the promise of an even more enhanced level of commercial nuclear safety while also substantially lowering the cost of manufacturing and deploying nuclear power through centralized manufacturing,  mass production, and transport by barge or rail to a nuclear power facility.

The first of this new generation of small nuclear reactors is being deployed by the Russians-- not the United States. But its not a land based reactor. It is a floating nuclear reactor. And floating nuclear reactors could be the key towards finally galvanizing broad acceptance of nuclear energy for all. 

Russia  intends to  mass produce floating 70 MWe nuclear power plants at shipbuilding facilities. These will then be towed   to coastal waters near industrial centers, towns and cities for the production of electricity and desalinated water.

The US once had the intention of deploying an offshore nuclear power facility as a way to avoid the increasing difficulties of licensing land based reactors. Four larger reactors were to be deployed by Westinghouse just 16 kilometers north of Atlantic City at the mouth of Great Bay. But licensing these off-shore reactors proved to be just as publicly difficult as land based reactors. And the project was eventually canceled.

But what if we deployed some floating nuclear reactors far out to sea-- far away from the  coastal environments of any town or city and the licensing headaches associated with coastal deployment.  Instead, these Ocean Nuclear power plants would be deployed hundreds or even over a thousand kilometers away from continental coastlines for the production of carbon neutral synthetic fuels. These clean synthetic fuels could then be shipped to any fuel port in the world for the production of electricity or for utilization as transportation fuel for automobiles, trucks, plains, and ships.
The conversion of seawater into methanol through nuclear electricity

The US Navy has recently revealed that they have developed a technology that can produce carbon neutral synthetic fuels from seawater by simply using a carbon neutral source of electricity. This technology takes advantage of the fact that the concentration of bound and dissolved carbon dioxide in seawater is  approximately 140 times greater than in the atmosphere. At the same time, the hydrogen contained in the seawater could be extracted through electrolysis and synthesized with CO2 to manufacture a variety of hydrocarbon fuels.

While the US Navy is focusing its attention on using nuclear or renewable OTEC technologies for manufacturing jet fuel at sea, the Navy's new technology  could be easily utilized to manufacture other carbon neutral fuels such as methanol, dimethyl ether, diesel fuel, and even gasoline.

The production of methanol at sea could allow floating nuclear power plants to ship this carbon neutral fuel  to practically any coastal port on Earth-- for  electricity production and for ground transportation fuel. Methanol tankers already exist and  come in a wide variety of sizes for transporting large quantities of methanol.

Methanol is relatively non-corrosive fuel that  remains at a liquid state at room temperature and atmospheric pressure. Methanol requires no specialized containment and can be handled the same way as other oil based liquid fuels.  Since methanol is easily biodegradable  in marine waters, an accidental  tanker spill would be much less damaging to the marine environment and to coastal beaches  than an oil or gasoline spill. 

Japanese Methanol Tanker (Credit: SHIN KURUSHIMA DOCKYARD CO)

For electricity production, methanol can be easily used in  modified natural gas turbines. Tests have shown that,  compared to natural gas,  methanol produces a  higher electrical power output due to the higher mass flow, and significantly reduces NOx and while also producing  no SO2 emissions at all. The clean burning characteristic of methanol are also expected to reduce maintenance costs for a converted natural gas turbine. So using carbon neutral methanol for electric power production would not only reduce global warming but would also mean cleaner air in general. Methanol can be easily pumped via pipelines to modified turbine power plants located in inland regions for distribution to electric power  all over the mainland United States. Of course, on islands such as Hawaii, methanol could finally end the islands'  dependence on high priced oil for electricity.

Methanol can also be used in fuel cell power plants which an be used for back up electricity for buildings or for homes. And methanol fuel cells are currently used to power portable electronic devices.

Methanol electric power plant at Point Lisas, Trinidad (Credit: Mendenhall Technical Services)
Methanol can also be used to power seagoing vessels. And some ocean vessels have already been designed to use methanol in order to reduce pollution from vessels using diesel fuel.

Methanol can also be easily converted into dimethyl ether (DME) through dehydration over a catalyst.  Only moderate modifications are required to enable a diesel fuel engine to burn dimethyl ether. And dimethyl ether is a much cleaner fuel than  diesel fuel for trucks and other heavy ground vehicles.

The further dehydration of dimethyl ether can convert it into high octane gasoline. This carbon neutral gasoline can be either mixed with existing fossil fuel derived sources of gasoline or can be used to completely replace gasoline derived from fossil fuels.

Conversion of Methanol into Dimethyl Ether and Gasoline for ground transportation vehicles
So nuclear power plants floating far out to sea in the worlds oceans could potentially supply carbon neutral fuels for both electricity and transportation fuel for the entire planet. Such Ocean Nuclear  facilities could be easily designed to withstand the havoc of hurricanes, cyclones, and other tropical storms while also being inherently immune to earthquakes and tsunamis. But storm related production disruptions could easily be avoided by locating such facilities in regions where the frequency of tropical storm formation is very infrequent.

The colored areas  are regions where cyclones and hurricanes are most frequently created in the world's oceans (Credit: National Oceanic and Atmospheric Administration)
But Ocean Nuclear complexes could still be located at latitudes where winter snow could be avoided in order to attract more employees to work at the remote ocean facilities. Semi-permanently docked cruise ships could be purchased by a large Ocean  Nuplex to provide housing, recreation, restaurants, shopping malls, small hospitals and schools for its nuclear power plant and synfuel operators and engineers and their families.

Since small nuclear reactors will be designed to produce 300 MWe of electricity or less, that means that thousands of small nuclear reactors would have to be mass produced and deployed to sea in order to replace America's  transportation fuel needs alone. If nuclear manufactured methanol were also required to  replace all of America's  peak load electricity production  then several hundred more small reactors would also have to be manufactured. Of course, if the US wanted to export carbon neutral fuels to other countries then thousands more small nuclear power plants would have to be built and deployed to sea.

Centrally manufacturing dozens or even  hundreds of small nuclear reactors in the US every year would dramatically reduce the capital cost  nuclear reactors and, therefore, the cost of synthetic fuels being produce from these Ocean Nuclear facilities.  This would mean millions of high wage manufacturing jobs being created on the American continent for the production of floating nuclear power plants that most Americans would never see. Such nuclear ocean synfuel production facilities could be clustered in an area less than 100 square kilometers (a 10 kilometers by 10 kilometers) while producing 25 to 50 GWe of power for synfuel production.

Large remote Ocean Nuplexes  could also be used to produce jet fuel, and even ammonia for fertilizer (synthesis of atmospheric nitrogen combined with hydrogen extracted from seawater through electrolysis).

US Navy nuclear aircraft carriers could  stop by such Ocean Nuclear complexes to refuel their vessels with jet fuel and also for some R&R for the crew at one or more of the Nuplex cruise ships which could feature a large variety of entertainment and shops  which could add more revenue for the Ocean Nuclear Complex.

Security for Ocean Nuclear facilities could also be provided by the US Coast Guard, easily affordable by a large nuclear complex without any tax payer expense. They would also, of course, have their own security forces.   

There might also be logistical advantages for locating floating  uranium extraction platforms within a few dozen or a few hundred kilometers of an  Ocean Nuclear Complex. There's more than 4 billion tonnes of natural uranium in seawater, enough to power and fuel all of human civilization for over 3000 years. And if the spent fuel is eventually recycled in next generation breeder reactors then uranium could supply civilization with power for more than 300,000 years. However, since the  uranium content of the oceans will be resupplied with its current uranium content in less than 150,000 years, marine uranium could, in theory, supply human energy needs for as long as humans remain on Earth. Of course, this doesn't even include terrestrial thorium supplies and potential extraterrestrial uranium and thorium supplies within the solar system in the future.

Floating airports located perhaps 10 to 100  kilometers  away from an  Ocean Nuplex could take advantage of their proximity to synthetic jet fuel,  cheap electricity, and desalinated water supplies.  Underwater electric power cables that stretch more than 500  kilometers away from their power source are already in existence.

Floating space launch facilities in the future could also take advantage of Ocean Nuclear complexes located near the Earth's equatorial regions to take full delta-v advantage  of the Earth's rotation. Launch facilities located less than 80 kilometers away from an Ocean Nuplex could utilize the abundant hydrogen and oxygen produced at the floating nuclear facility-- for cryogenic rocket fuel

Ironically, Ocean Nuclear facilities might also attract new communities of people living on floating artificial islands. Such floating island communities might be located just 100 to 500 kilometers away from an Ocean Nuclear complex, taking advantage of the cheap nuclear electricity and high paying jobs-- along with the warm climate and spectacular ocean views! But even at just 100 kilometers away from the floating Nuplex, from the balcony of your floating home, you'd still be at least 70  kilometers away from from being able to see the nuclear power facility over the curve of the beautiful blue horizon!

Marcel F. Williams

Links and References



Monday, November 24, 2008

Gasoline from Air and Water

by Marcel F. Williams

Fossil fuels are predominantly responsible for putting excess carbon dioxide and methane into the Earth's atmosphere, greenhouse gases that are melting our polar ice caps, raising global sea levels, and causing more extreme climate conditions around the world. The coal and natural gas power industry has looked looked towards future technologies for the on site capture of flu gas in order to recover and sequester carbon dioxide. However, there is no cost effective technology for capturing the CO2 from the mobile producers of carbon dioxide: automobiles, trucks, aircraft, and sea craft.

But there are new technologies that are rapidly being developed that may eventually divorce carbon dioxide polluting sources of energy from the need for on site capture and sequestration of carbon dioxide. These devices are sometimes referred to as mechanical trees. But what they do is to simply extract and recover carbon dioxide from the atmosphere. And these future technologies appear to be far more efficient at extracting CO2 from the air than the plant life on our planet.

Some argue that these carbon dioxide from air extracting technologies could be the saviors of the fossil fuel industry. Ironically, such future technologies could also eventually lead to the complete extinction of fossil use on this planet if the CO2 taken from the atmosphere is used in combination with hydrogen from water to produce hydrocarbon fuels such as: gasoline, methanol, diesel fuel, jet fuel, and dimethyl ether.

Hydrogen

Because the combustion of hydrogen produces only energy and water, hydrogen via the electrolysis of water through hydroelectric, nuclear, wind, and solar has often been proposed as a replacement for hydrocarbon transportation fuels. Liquid hydrogen fuel has been used in US space craft since the days of the Apollo Moon program. And liquid hydrogen has also been frequently proposed for future generation subsonic and hypersonic airliners and aircraft. Hydrogen fueled buses now transport commuters in many urban areas in the US. And hydrogen automobiles have been demonstrated by many automobile companies around the world .

However, hydrogen automobiles have a substantially shorter range than hydrocarbon fueled vehicles and are a lot less efficient than electric vehicles. Refueling hydrogen vehicles also takes much longer than refueling with gasoline, ethanol, or methanol. Because of the hydrogen embrittlement of metals like steel, hydrogen pipelines are more expensive to maintain than natural gas and oil pipelines. Aircraft, seacraft and ground vehicles, and the infrastructure associated with these vehicles, would also have to be completely replaced if we completely replaced our fuel economy with hydrogen.


Hydrocarbon fuels from CO2 and hydrogen

Alternatively, there are several demonstrated methods for synthesizing hydrocarbon fuels by utilizing carbon dioxide in combination with hydrogen which could allow a country to avoid any major overhaul in its transportation energy infrastructure.

Chemist have known how to produce methanol from hydrogen and carbon dioxide for more than 80 years:

CO2 + 3H2 → CH3OH (methanol) + H2O

Methanol is mostly used as a feedstock for making other chemicals. But methanol can be converted into dimethyl ether (DME), a fuel that can be effectively used in diesel engines equipped with new fuel injection systems. The fact that dimethyl ether produces no black smoke, soot, or sulfur dioxide is an clean advantage it has over diesel fuel.

Methanol can also be converted into high octane gasoline via the Mobil Oil methanol to gasoline (MTG) process. Back in the 1980's, the New Zealand government produced 600,000 tonnes of gasoline a year from methanol derived from natural gas using the MTG process.

Methane gas can also be synthesized from hydrogen and carbon dioxide:

CO2 + 4H2 → CH4 (methane) + 2H2O

And methane can also be converted into diesel and jet fuels via Fischer-Tropsch and hydrocracking processes.

Mechanical extraction of atmospheric CO2

Plants capture carbon dioxide from the atmosphere while utilizing sunlight to convert the CO2 into starch. During photosynthesis, trees, for instance, convert carbon dioxide and water into starche molecules and oxygen through a series of oxidation and reduction reactions:

6 CO2 + 6 H2O + sunlight ---> C6H12O6 + 6 O2

Some farm crops and trees can produce up to 20 metric tons per acre (4047 square meters) of biomass a year. One tonne of dried tree consist of 0.45 tonnes of carbon which would translate into the extraction of 1.65 tonnes of carbon dioxide annually extracted from the atmosphere. That's 33 tonnes of CO2 per acre extracted on an annual basis.

Even though the concentration of CO2 in the Earth's atmosphere is a meager 0.04 per cent, companies like GRT (Global Research Technologies) in Arizona and Canadian researchers at the University of Calgary have already built machines that can extract carbon dioxide from the atmosphere far more efficiently than any tree or any other source of biomass. GRT claims that its carbon dioxide air extraction system is a thousand times more efficient than a tree of equal size.


GRT CO2 absorbent material

The University of Calgary team has shown that they could capture CO2 directly from the atmosphere with less than 100 kilowatt-hours of electricity per tonne of carbon dioxide. Their carbon dioxide from air extraction tower was able to capture the equivalent of about 20 tonnes per year of CO2 on just one single square meter of air scrubbing material. Astonishingly, this suggest that even the most conservative estimates would allow these CO2 extracting machines to produce more than 80 thousand tonnes of carbon dioxide per acre annually.

University of Calgary carbon dioxide extraction machine


Because of the need for cheap electricity for hydrogen production, only nuclear and hydroelectric facilities would be currently viable for hydrocarbon fuel production utilizing carbon dioxide from air extraction technologies. Hydroelectric facilities currently produce electricity at 0 .85 cents per kwh while electricity from nuclear facilities currently cost 1.68 cents per kwh. Wind and solar thermal electricity, however, is much more expensive and ranges from over 4 cents per kwh to over 6 cents per kwh.

At the Los Alamos National Laboratory in Los Alamos, New Mexico, F. Jeffrey Martin and Williams L. Kubic, Jr. have developed the Green Freedom concept for using the cooling towers of nuclear reactors to extract carbon dioxide from the atmosphere for the production of gasoline and methanol. They argue that a 1 GWe power plant using their Green Freedom method could produce 18,000-bbl/day of gasoline or 5000 tonnes a day of methanol.

Carbon neutral hydrocarbon synfuel production at nuclear and hydroelectric facilities would not only allow such power facilities to produce transportation fuels and industrial chemicals, they would also allow them to pump methanol and oxygen up to 80 kilometers away to high efficiency power plants for the production of peak-load and back-up-load electricity and commercial waste heat. Nuclear power plants could therefore not only produce base-load electricity but could also supply methanol fuel to replace greenhouse polluting natural gas power plants which are used for daytime peak-load energy and back-up energy for wind and solar power plants.

In 2006, the US consumed nearly 21 million bbl/day of petroleum for transportation fuel and industrial chemical use. If we assumed that nuclear power plants replaced all of the petroleum used in the US in 2006, that would roughly require more than a thousand new 1Gwe nuclear reactors, over 1000 GWe of electrical capacity. Existing nuclear sites that already have nuclear reactors could probably add an additional 200 to 300 Gwe of capacity. However, if one large centralized nuplex (nuclear park) with about 30GWe of average electrical capacity were set up in every state in the union, then that could add an additional 1500 GWe of electrical capacity, more than enough to replace all of our petroleum needs today and probably our needs 30 years from now.

If the new Obama administration is going to invest substantial R&D money into new energy technologies, I would strongly suggest investing in the fast tracking of these carbon dioxide extraction from air technologies that could revolution synfuel production by helping to achieve US independence from the petroleum fuel economy while protecting the global environment from the dangers of global warming and climate change.

Links and References

1. Green Freedom: A concept for producing carbon-neutral synthetic fuels and chemicals, Los Alamos Labs, November 2007 F.J. Martin and WL Kubic,

2. GRT (Global Research Technologies, LLC)

3. Giant Carbon dioxide Vacuums

4. Snatching Carbon dioxide from the Atmosphere

5. CO2 capture from air

6. First Successful Demonstration of Carbon Dioxide Air Capture Technology Achieved:

7. First Successful Demonstration of Carbon Dioxide Air Capture Technology Achieved by Columbia University Scientist and Private Company, (2007) Earth Institute News Archive, 04/24/07

8. Carbon capture and storage:

9. Researchers Scramble to Create CO2-Busting Technologies:

10. CO2 capture from ambient air: a feasibility assessment:

11. Carbon Capture and Storage A False Solution

12. The Case for Carbon Dioxide Extraction from Air

13. Klaus S. Lackner, Patrick Grimes, Hans-J. Ziock, Capturing Carbon Dioxide From Air

14. K. Schultz, L. Bogart, G. Besenbruch, L. Brown, R. Buckingham, M. Campbell, B. Russ, and B. Wong HYDROGEN AND SYNTHETIC HYDROCARBON FUELS – A NATURAL SYNERGY General Atomics Poster

15. G. Olah, A. Goeppert, and G. Prakash, (2006) Beyond Oil and Gas: The Methanol Economy, Wiley-VCH Verlang, Weinheim, Germany


A New Papyrus Publication

Blog Archive

CINEMA FANTASTIC

Popular Posts