Showing posts with label nuclear power plant. Show all posts
Showing posts with label nuclear power plant. Show all posts

Tuesday, August 1, 2017

(Part IV) A Practical Timeline for Establishing a Permanent Human Presence on the Moon and Mars using SLS and Commercial Launch Capability

Three Mars Regolith Habitats (MRH) connected to a transparent martian biosphere covered with a water shielded biodome.

by Marcel F. Williams

Part IV: Mars

Once NASA has established a permanent human presence in high Mars orbit in the form of a microgravity storm shelter (BA-330), microgravity Deep Space Habitat (DSH), and a rotating simulated gravity producing space station (AGH-SS), the American space agency can then proceed to establish a permanent human presence on the surface of Mars.

An Ares CLV-7B with payload joined with an  ADEPT deceleration shield needed to safely enter  the martian atmosphere before landing. An additional attitude control module is added to enable thrusters to  control the angle of the vehicle's entry into the  martian atmosphere.



2032

SLS Launches:


SLS Launch 34: Two CLV-7A (Cargo Landing Vehicle) to LEO to be deployed to high Mars orbit by OTV-125 vehicles and deployed to the martian surface by ADEPT decelerators

The First CLV-7A  will have an  ATHLETE robot that will deploy electric powered excavation vehicles, sintering vehicles,  backhoe, lifting crane

The Second CLV-7A   will deploy at least 160 KWe of  nuclear power to the  martian surface with at least a 10 year lifetime for the fueled reactors.

SLS Launch  35: Two CLV-7A (Cargo Landing Vehicle) to LEO to be deployed to high Mars orbit by OTV-125 vehicles and deployed to the martian surface by ADEPT decelerators

The first CLV-7A will deploy  a mobile hydrogen tanker (MHT)   plus  four   Water Bug regolith water extraction robots to the martian surface

The  second  CLV-7B will carry two mobile water tankers (MWT), two mobile LOX tankers (MLT


SLS Launch 36: Two CLV-7A (Cargo Landing Vehicle) to LEO to be deployed to high Mars orbit by OTV-125 vehicles and deployed to the martian surface by ADEPT decelerators

The first CLV-7A will deploy  a second mobile hydrogen tanker (MHT)   plus  four   Water Bug regolith water extraction robots to the martian surface

The  second  CLV-7B will carry two mobile ground transport vehicles

SLS Launch 37: Two Ares-ETLV-4 crew landers to LEO. They will self deploy themselves to high Mars orbit and deploy themselves to the martian surface attached to ADEPT decelerators

Commercial Launches:

1. Private commercial launch companies will continue to deploy ADEPT  deceleration shields to LEO. The deceleration shields will be transported to high Mars orbit  by NASA's growing fleet of  Orbital Transfer Vehicles (OTV-125). The ADEPT shields will allow NASA to use cargo landing vehicles (CLV-7B) and crew landing vehicles (ETLV-4), originally designed for lunar missions, to deploy cargo and crews to the martian surface. 

2. ACES  68 WPD-LV will be deployed to the lunar surface and to the surface of Mars and Deimos, replacing NASA's WPD-LV-7A propellant producing water depots

Note: 

1. All SLS and commercial launched vehicles for Mars will be deployed to Mars during the 2033 launch windows. 

2. Reusable OTV-125 will continue to be deployed to LEO with every SLS launch that uses an upper payload fairing

Two Lunar Regolith Habitats (LRH) next to a lunar biosphere domed with lunar regolith bags to protect it against excessive cosmic ration, micrometeorites, and extreme thermal fluctuations.



2033

SLS Launches:

SLS Launch 38:  A single CLV-7B carrying a Mars Regolith Habitat (MRH) will be launched to LEO to be deployed to high Mars orbit by an OTV-125  and deployed to the martian surface by ADEPT decelerators

SLS Launch 39: A second CLV-7B carrying a Mars Regolith Habitat (MRH) with a equipped with a medical level will be launched to LEO to be deployed to high Mars orbit by an OTV-125  and deployed to the martian surface by ADEPT decelerators

SLS Launch 40: A single CLV-7B carrying a Lunar Regolith Habitat (LRH) will be deployed to LEO. The lunar habitat will be used as an aquaculture facility for raising shrimp and fish.

SLS Launch 41: Two CLV-7A (Cargo Landing Vehicle) to LEO to be deployed to the lunar surface.

The First CLV-7B will deploy an inflatable 32 meter in diameter Kevlar biosphere to the lunar surface

The Second CLV-7B will deploy the biosphere's connecting airlocks (2.4 meters in diameter),
Environmental Control and Life Support Systems (ECLSS) and panel components for the internal construction of housing and work spaces  and geodesic dome components.


Notes: 

1. Odyssey 5 crew will depart EML1 during an April 2033 launch window, arriving in high Mars orbit in October 2033  to join 12 astronauts who are already in Mars orbit from the previous Odyssey flight.

2. Mars surface outpost components  will be transported by OTV-125 spacecraft from EML1 during May 2033 launch windows, arriving in high Mars orbit in September of 2033. 

3. A crew of six (four Americans and two foreign guest astronauts) will be the first humans to set foot on the surface of Mars in November of 2033, landing an ADEPT shielded Ares-ETLV-4 on the martian surface. A second landing of six will occur, three months later in February of 2034. Afterwards, crewed flights to the martian surface from high Mars orbit will occur every six months. 

4. The Ares ETLV-4 crew lander can land on the surface of Mars with enough propellant to return to low Mars orbit. A second  option lands the Ares ETLV-4 on the surface of Mars   with only enough hydrogen to return to Mars orbit; liquid oxygen would be supplied by mobile LOX tankers (MLT) deriving their oxygen supplies from propellant depots located near the martian outpost.  A third option lands the Ares ETLV-4 on the martian surface almost empty with both LOX and LH2 supplied from the Mars outpost for its return trip to orbit.

5. Eight  Odyssey 4 and Odyssey 5 crew members will depart Mars orbit in January 2035, returning to cis-lunar space in September of 2035 aboard the Odyssey 4. They will leave 16 crew members behind in Mars orbit aboard the AGH-SS and on the surface of Mars at the Mars outpost. 

6. The inflatable lunar Kevlar biosphere will 32 meters in diameter with a safety factor of four. Lunar regolith bags two meters thick will shield the upper hemisphere from micrometeorites, excessive radiation, and from extreme thermal fluctuations. The upper hemisphere of the lunar biosphere will provide a spacious recreational area under the geodesic dome. The lower hemisphere of the lunar biosphere will provide ample accommodations for housing, laboratories, and food production: agronomy, aquaculture, poultry.
 

Crewed Ares ETLV-4 coupled with a protective ADEPT deceleration shield. The Ares ETLV-4 can land on the martian surface with enough propellant to return to low mars orbit. 

2034


1. SLS Launch 42: An MRH (Mars Regolith Habitat) agronomy habitat will be deployed to LEO with an Ares-CLV-7B and an OTV-125 destined for the martian surface. 

2. SLS Launch 43: An MRH aquaculture habitat will be deployed to LEO with an Ares-CLV-7B and an OTV-125 destined for the martian surface. 

3. SLS Launch 44: Two Ares ETLV-4 spacecraft plus an OTV-125 will be deployed to LEO destined for high Mars orbit.

 
4. SLS Launch 45: Two Ares CLV-7A (Cargo Landing Vehicle) to LEO to be deployed to LEO destined for the martian surface:

The First Ares CLV-7B will deploy an inflatable 32 meter in diameter Kevlar biosphere to the martian surface

The Second Ares CLV-7B will deploy the biosphere's connecting airlocks (2.4 meters in diameter),
Environmental Control and Life Support Systems (ECLSS) and panel components for the internal construction of housing and work spaces  and transparent Kevlar biodome. 


Notes:

1. Mars biosphere: The the top hemisphere of the inner dome of the  Mars biosphere will be covered with a transparent UV filtering layer. The outer area will be  shielded from excessive cosmic radiation with a transparent water filled biodome. This will allow natural sunlight to enter the dome.


The martian moon Deimos will be utilized for the production of hydrogen, oxygen, and water eliminating the need to import water from the Earth's moon in order to provide water and propellant for interplanetary vessels returning to cis-lunar space. 


2035


1. SLS Launch 46: Two CLV-7B spacecraft will be deployed to LEO destined for the surface of the martian moon, Deimos:

The first CLV-7B  will deploy mobile ground excavation vehicles, lifting cranes, and regolith sintering vehicles. 

The second  CLV-7B  will deploy four small nuclear reactors for providing up to 160 KWe of electric power.


2. SLS Launch 47: An OTV-125 plus two CLV-7B spacecraft will be deployed to LEO destined for the surface of the martian moon, Deimos:

The first CLV-7B will have two cargo levels and will deploy mobile water, hydrogen, and water tankers to the surface of Deimos

The second CLV-7B will have two cargo levels and will deploy a plasma arc pyrolysis and syngas refinery to Deimos for the production of water, hydrogen, and water. The upper level will deploy another mobile hydrogen tanker.


3. SLS Launch 48: An OTV-125 plus a single CLV-7B carrying a Lunar Regolith Habitat (LRH) will be deployed to LEO. The lunar habitat will be used as poultry  facility for producing chickens and eggs.

4. SLS Launch 49: An OTV-125 plus two CLV-7B will be deployed to LEO destined for the lunar surface

The First CLV-7B will deploy an inflatable 32 meter in diameter Kevlar biosphere to the lunar surface

The Second CLV-7B will deploy the biosphere's connecting airlocks (2.4 meters in diameter),
Environmental Control and Life Support Systems (ECLSS) and panel components for the internal construction of housing and work spaces  and geodesic dome components.


Notes

1. With five habitat modules and two biospheres, NASA's lunar outpost would be complete and capable of housing up to 200 personal-- if desired. 

2. Deimos water and propellant producing facility will allow NASA to fuel spacecraft operating in Mars orbit and interplanetary spacecraft heading back to cis-lunar space. 

3. Launch windows to Mars from cis-lunar space will occur in June and July of 2035 with payloads and personal arriving to high Mars orbit in December of 2035 or January of 2036. 


So, under this architecture, NASA will have permanent outpost on both the Moon and Mars, and artificial gravity outpost in high Mars orbit by the middle 2030s. The DOD will have permanent outpost on the Moon and an artificial gravity outpost at EML4 by early 2030s. This will be possible thanks to a combination of regular launches by the SLS (up to four launches a year by the late 2020s) and private commercial launch vehicles in the 2020s and the 2030s.

Propellant producing water depots are the key to substantially enhancing the payload capabilities of both the SLS and private commercial launch vehicles under this scenario. However, NASA's current plan of relying on propellants  that have to be terrestrially produced  and launched from the Earth's enormous gravity well would severely curtail the payload capabilities and sustainability of   the SLS and private commercial launch vehicles. 

Links and References


A Practical Timeline for  Establishing a Permanent Human Presence on the Moon and Mars using SLS and Commercial Launch Capability

 Part I

Part II

Part III

NASA Ames Research Center Trajectory Browser

What about Mr. Oberth?

Inflatable Biospheres for the New Frontier

Protecting Spacefarers from Heavy Nuclei




Thursday, September 18, 2014

Spent Fuel and the Thorium Solution

Thorium deposits in North America (Credit:USGS)
by Marcel Williams

Humanity currently exist in a global energy economy that is dominated by fossil fuels. And the combustion of fossil fuels by our industrial civilization has  created atmospheric conditions with an ever increasing  CO2 (carbon dioxide) content. The carbon dioxide in the Earth's atmosphere is now higher than it has ever been in the history of the human species. In fact, it is higher than in the entire history of our genus, Homo, which first emerged in sub-Saharan Africa more than 2.5 million years ago.

At approximately 400 parts per million, current CO2 levels in the Earth's atmosphere may be as high as they were during the Pliocene Epoch when sea levels may have been 10 to 40 meters higher than they are today. And as long as we continue to use fossil fuels, the CO2 content in the Earth's atmosphere is likely to reach levels not seen since the Earth was devoid of polar ice caps altogether which could eventually raise global sea levels above 60 meters.

So thanks to the humongous energy needs of our modern civilization, future generations face the possibility of living in a much warmer world with substantially higher sea levels. Rising sea levels  could eventually flood most of the world's coastal areas including some of the world's major cities.

Altruistically,  our current civilization should be trying to create a better tomorrow for future generations.  Unfortunately, there are global economic interest that  have tens of  trillions of dollars invested in the fossil fuel economy. And their priorities are to make near term profits-- even at the expense of humanity's long term environmental and economic future. Of course, America's capitalist system exist within a government of the people, by the people, and for the people. So within a democratic republic, free people have the ultimate responsibility to make sure that our civilization doesn't wreck the environment for future generations. 

While there are viable technological alternatives to the fossil fuel economy, there are many who actually fear the-- best technological solution-- to the problem of global warming and  the deposition of excess CO2 in the Earth's atmosphere: nuclear energy.

Commercial nuclear power is the principal carbon free producer of electricity in the United States, producing more than three times as much carbon free electricity as hydroelectricity,  six times as much as wind, and more than 100 times as much carbon free electricity as solar. And this is in spite the fact that the United States pretty much halted the building of new nuclear power plants in the US for more than thirty years.

Commercial nuclear energy is also the safest form of electricity production ever created. Even if you include the accidents at  Chernobyl, Fukushima, and Three Mile Island, nuclear energy production is still substantially safer than using coal, natural gas, hydroelectricity, solar, or wind.


Energy Mortality Rate (deaths per trillion kilowatt hours)


US Coal -------- 15,000

Natural Gas ------ 4000

Hydroelectric ---- 1400

Solar (rooftop) ---- 440

Wind ---------------- 150

Nuclear ---------------90


Although the United States has more commercial nuclear reactors in operation than any other nation on Earth, the construction of new reactors in the US still lags well behind  China and Russia and even behind India, and Europe. While the next generation of small centrally mass produced nuclear reactors  should be available for commercial service in the US by the  2020's, the future domestic demand for such reactors by US utilities is still clouded by the fact that there is still no long term solution to the political problem of spent fuel which is often referred to as nuclear waste. 


Number of nuclear reactors currently (9/18/2014) under construction by nation: 

CHINA------------------------------------------     27
RUSSIA-----------------------------------------     10
INDIA--------------------------------------------     6
KOREA, REPUBLIC OF ---------------------    5
UNITED STATES OF AMERICA -----------   5
JAPAN ---------------------------------------------2 
PAKISTAN -------------------------------------    2
SLOVAKIA -------------------------------------    2
TAIWAN ------------------------------------------ 2
UKRAINE---------------------------------------     2
UNITED ARAB EMIRATES-----------------     2
FRANCE -----------------------------------------    1  
ARGENTINA-----------------------------------     1   
BELARUS ---------------------------------------    1  
BRAZIL ------------------------------------------    1  
FINLAND ----------------------------------------    1         
       
          
What to do with the spent fuel once its removed from commercial nuclear reactors  is one of the most difficult political obstacles hampering the approval and construction of new nuclear reactors in the US.   Within some American States, it is even illegal to build  new nuclear reactors  until there is a permanent repository or another long term solution to the problem of nuclear waste.

The  irony in all of this, of course,  is the fact that relative to other electric power producing facilities, nuclear power plants actually create very little toxic waste. A 1000 MWe nuclear power plant only produces about  27 tonnes of spent fuel every year.  That's a quantity that is so small that all of the radioactive material ever produced from the commercial nuclear power industry in the US could be placed in an area the size of a football field only a few meters high. That's it!

A 1000 MWe coal power plant, on the other hand, produces approximately 400,000 tonnes of toxic material every year:  ash from coal power plants that is  contaminated with toxic materials such as  mercury, arsenic, chromium, and cadmium which can contaminate drinking water supplies and damage the human nervous system and other vital  organs. The ash pumped into the atmosphere of a coal power plants also expose surrounding populations to approximately 100 times more background radiation than a nuclear power plant does. Coal power plants, of course, are the primary producers of greenhouse gasses amongst electric power facilities.

But even solar energy produces substantially more toxic waste than commercial nuclear reactors. Per kilowatt of electricity produced,  the toxic materials required to produce rooftop solar panels and the toxic materials contained in the dismantling of solar panels is quantitatively at least 10,000 times that of the toxic materials produced from the nuclear industry. So the toxic waste produced from commercial nuclear power plants is miniscule compared to the toxic waste produced from the solar panel industry.

Ironically, most of the spent fuel produced from a commercial nuclear power plant is actually not waste at all. More than 95% of the fissile and fertile material contained in spent fuel can actually be recycled. This is already been successfully done to a partial degree in countries like France where plutonium is extracted from spent fuel and then mixed with depleted uranium 238. 

But way back in 1982, the  Shippingport Atomic Power Station in Beaver County, Pennsylvania was shut down after utilizing enriched uranium in a blanket of thorium 232 for five years.  In 1987, it was reported that  the core of the light water thorium reactor contained 1.3% more fissile material than it had when it was originally fueled.  This clearly  demonstrated that a light water breeder reactor could produce more fissile  material than it consumed if fissile material was utilized in a blanket of fertile thorium.

So plutonium could be extracted from the spent fuel of Light Water Reactors and mixed with thorium in order to produce carbon free electricity in Light Water Thorium Reactors while burning up the plutonium.   The fissile uranium produced from the conversion of thorium 232 into uranium 233 could then be mixed with the with depleted uranium or reprocessed uranium from spent fuel to produce power in current Light Water Reactors.  Burning plutonium from spent fuel in Light Water Thorium Reactors while utilizing uranium 233 from thorium reactors for reuse in Light Water Uranium Reactors could demonstrate that more than 95% of the material in spent fuel can be recycled. Recycling the fissile material in spent fuel would dramatically reduce the already meager amount of radioactive material that has to be sequestered into nuclear waste site. And this could help to end the prohibition against building new nuclear reactors in some States in the United States.


Countries with the Largest Thorium Reserves (tonnes)

India ......................    846,000
Turkey...................     744,000
Brazil ....................     606,000
Australia ...............    521,000
USA ......................     434,000
Egypt....................      380,000
Norway.................      320,000
Venezuela.............      300,000
Canada.................      172,000
Russia..................       155,000
South Africa........      148,000
China...................      100,000
Greenland..............     86,000
Finland..................      60,000
Sweden..................      50,000
Kazakhstan............     50,000


However, the moderation of neutrons could be reduced if the water content of the thorium reactor were reduced by 25 to 50%. This would allow the reactor to burn the other radioactive waste products  in a solid fuel mix with plutonium and thorium.  That, of course, would completely eliminate the need to bury any spent fuel products created by commercial nuclear reactors.

There's only enough-- terrestrial uranium-- to produce all of the  electricity and synfuels required to power all of  human civilization at current levels for about 15 years. However,  there's more than 4 billion tonnes of uranium in seawater, enough   provide all of the energy needs for human civilization for more than 3600 years. Recycling the spent uranium and might extend this to over 5000 years. Utilizing the plutonium from Uranium Light Water Reactors to power Thorium Light Water Reactors, could power human civilization for 2800 years.

So a uranium and thorium economy could power human civilization at current levels for nearly 8000 years.  Beyond this point, plutonium/uranium breeder reactors would finally be required to continue to power human civilization on Earth by solely using nuclear fission.   

Thorium deposits on the lunar surface (credit:NASA)

However, additional sources of thorium could be mined on the surface of the Moon, a resource that's only a few days away by chemical rockets. Because there is no life on the Moon, thorium could be exploited much more extensively on the lunar surface than on Earth, perhaps to a level that could allow lunar thorium to power a nuclear fuel economy on Earth forever.


Marcel Williams


Links and References

 
Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations

Departures from eustasy in Pliocene sea-level records

National Geographic: Rising Seas

How Deadly Is Your Kilowatt? We Rank The Killer Energy Sources

Under Construction Reactors
 
State Restrictions on New Nuclear Power Facility Construction

Radioactive Waste Management

Safely Managing Used Nuclear Fuel

Spent Fuel Transport & Storage

The real waste problem, solar edition

Light Water Breeder Reactor: Adapting A Proven System

How thorium can solve the nuclear waste problem in conventional reactors

The Thorium Dream

The Thorium Alternative

Use of Reprocessed Uranium

Fueling our Nuclear Future 

USGS Map of Thorium Deposits in North America
 
Thorium Deposits on the Moon







Blog Archive

CINEMA FANTASTIC

Popular Posts