Tuesday, March 23, 2010

First CANDU Utilization of Recycled Uranium from LWR Spent Fuel in China

CANDU Reactor in China first to directly use recovered uranium fuel
Major milestone demonstrates CANDU's fuel cycle flexibility

BEIJING, March 23 /CNW/ - Atomic Energy of Canada Limited (AECL) announced today that the first-ever fuel bundle to directly use recovered uranium from light water reactors was successfully placed in the Qinshan CANDU Unit 1 Pressurized Heavy Water Reactor (PHWR) on Monday, March 22.
A ceremony to commemorate the event was held at the Qinshan site and was attended by senior Chinese government officials along with representatives from AECL and its Chinese partners Third Qinshan Nuclear Power Company (TQNPC), Nuclear Power Institute of China (NPIC) and China North Nuclear Fuel Corporation (CNNFC).
Over the next six months, a total of 24 Natural Uranium Equivalent (NUE) fuel bundles will be inserted into two separate fuel channels at the Qinshan Unit 1 reactor in Haiyan, China. NUE fuel is made by mixing recovered uranium from spent fuel of light water reactors with depleted uranium from enrichment plant tails. The irradiation of all 24 NUE bundles will be completed in approximately 12 months.
"This commercial demonstration of NUE fuel is a first-of-a-kind advanced fuel collaborative effort for the parties and highlights the beginning of the engineering application of CANDU advanced fuel cycles," stated AECL President and Chief Executive Officer, Hugh MacDiarmid. "It establishes CANDU's ability to utilize alternative fuel cycles and demonstrates the strong synergy between CANDU technology and light water reactor technology."
The commercial demonstration of NUE fuel in the CANDU reactor is the final phase of a three-phase joint research project between AECL and its three Chinese partners, TQNPC, NPIC and CNNFC. The project was initiated in 2008 to explore the use of recovered uranium from light water reactors in a CANDU reactor and to prove that it is the simplest, most cost-effective and environmentally-friendly process to utilize alternative fuel sources.
AECL's Chief Technology Officer Dr. Anthony De Vuono added, "As a proven commercial power reactor, our Enhanced CANDU 6 has the highest neutron efficiency compared to other competing technologies and consumes about 30% less natural uranium. Our NUE fuel cycle opens up a sustainable development path leading to an overall extension of uranium fuel resources while, at the same time, reusing the spent fuel from light water reactors."
In December 2009, an expert panel comprised of representatives from China's leading nuclear academic, government, industry and R&D organizations unanimously recommended that China consider building two new CANDU units to take advantage of CANDU's unique capabilities in utilizing alternative fuels.
The existing Qinshan Phase III nuclear power plant includes two 728 MWe CANDU 6 PHWR reactors designed by AECL and built in cooperation with TQNPC. The two CANDU units are ranked among the top performing nuclear power stations in China.


1 comment:

赵小才 said...

1.Project Title: In processing two million tons of solid waste a year and recycling utilization demonstration project.

2.Construction unit: Hebi Shengtai Renewable Resources Ltd.

3.Equipment manufacturers: Zhengzhou Dingsheng Engineering Technology Co., Ltd.

4.Area and total investment: The total area of 171 acres. The total investment of 210 million yuan.

5.Construction content and scale: The project construct a solid waste from the source collection,  removal,  transportation information collection system heap storage control the whole process. Press the handle 2 million tons capacity planning of urban construction waste a year.

6.Project Time: One.2013.7-2014.6. Two.2014.7-2014.12.

7.Economic: By capacity planning,  the project annual sales income of 319 million yuan, profits of 127.6 million yuan, payback period of 2 years.

  The industry of construction waste recycling saves resources and reduce environmental pollution. It can improve urban and rural areas and enhance the taste. It is important for the conservation of land resources.

Blog Archive

Popular Posts